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1 The Brouwer Fixed Point Theorem and Introduction to
Manifolds

1.1 The Brouwer fixed point theorem

One of the reasons why people study algebraic topology is that it can tell us things unrelated
to topology itself. Here is one such theorem.

Theorem 1.1 (Brouwer). If f : Bn → Bn is continuous, then f has a fixed point; i.e.
∃x ∈ Bn such that f(x) = x.

To prove this, we need the following proposition:

Proposition 1.1. There does not exist a continuous map f : Bn → Sn−1 such that
f(x) = x for all x ∈ ∂Bn = Sn−1.

Proof. We did the proof of the case n = 2 on homeowork 6, and we will show this for n > 3
later. For n = 1, if f : [0, 1]→ {0, 1} is continuous, then f([0, 1]) is connected, so f is not
surjective.

Now let’s prove the fixed point theorem.

Proof. (Brouwer fixed point) Proceed by contradiction. If f(x) 6= x for all x ∈ Bn, define
g : Bn → Sn−1 by drawing a ray from f(x) to x and defining g(x) to be the intersection of
the ray with the sphere (that is not equal to f(x)).
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Note that g(x) = x for all x ∈ Sn−1. Check for yourself that g is a continuous function (try
coming up with a formula for it). But such a g cannot exist by the previous proposition.

1.2 Introduction to Manifolds

Definition 1.1. A topological space X is second-countable if there exists a countable base
for its topology.

Definition 1.2. A manifold of dimension n (or an n-manifold) is a topological space X
such that:

1. X is Hausdorff.

2. X is second-countable.

3. ∀x ∈ X, there is an open neighborhood Ux of x and a homeomorphism φ : Ux → Rn.

The pair (Ux, φ) is called a chart.

Remark 1.1. Why do we have the first two conditions? The second-countable condition
excludes “weird” spaces like the “long line.” The Hausdorff condition excludes spaces like
the “line with 2 origins.” This is X = R ∪ {0′}, where a set U ⊆ X is open if

• U ⊆ R, and U is open in the usual topology on R.

• U = (U ′ \ {0}) ∪ {0′}, where U ′ ⊆ R is open in the usual topology on R, and 0 ∈ U ′.

This is second-countable, and around x = 0′, (x−ε, x+ε) ∼= R and ((−ε, ε)\{0})∪{0} ∼= R,
so it satisfies the 3rd condition of being a manifold.

Example 1.1. Rn is an n-manifold.

Example 1.2. Sn is an n-manifold. If x ∈ Sn, then Sn \ {−x} is an open neighborhood
of x that is homeomorphic to Rn.

Example 1.3. If X is an n-manifold, and U ⊆ X is an open subspace, then U is an
n-manifold.

Proposition 1.2. If X is an n-manifold, and Y is an m-manifold, then X × Y is an
(n+m)-manifold.

Example 1.4. Tn is an n-manifold.

Proposition 1.3. If X is an n-manifold, and G acts “nicely” on X, then X/G is an
n-manifold.
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Proof. Given x ∈ X, let Ux be an open neighborhood of x such that fg(Ux) ∩ Ux = ∅
∀g 6= 0. Then if π : X → X/G is the natural projection map, then π|Ux : Ux → π(Ux) is a
homeomorphism. The rest of the proof may be assigned for homework.

Example 1.5. RPn is an n-manifold.

Example 1.6. L(p, q) is a 3-manifold.

Example 1.7. The Klein bottle and the torus are 2-manifolds.

Definition 1.3. An n-manifold with boundary is a topological space X such that

1. X is Hausdorff.

2. X is second-countable.

3. ∀x ∈ X, there exists an open neighborhood Ux of x and a homeomorphism φ : Ux →
Rn or φ : Ux → Rn+, where Rn+ = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.

The pair (Ux, φ) is still called a chart. The interior of X is

int(X) = {x ∈ X : ∃ chart (Ux, φ) s.t. Ux ∼= Rn}.

The boundary of X is

∂X = X \ int(X) = {x ∈ X : ∃ chart (Ux, φ) s.t. φ(x) ∈ {xn = 0}}.

Remark 1.2. Often, authors will talk about manifolds with boundary just as “manifolds.”
You should always check to see which terminology is being used in whatever you are reading.
There have been published results that are incorrect because they cited a result from
literature without checking to make sure that the source was using the correct definition
of “manifold” for their usage.

Definition 1.4. A manifold X (with boundary) is called closed if it is compact and
∂X = ∅.

Proposition 1.4. If X is an n-manifold with boundary, then ∂X is an (n− 1)-manifold.

Example 1.8. Bn is an n-manifold with boundary, and ∂Bn = Sn−1.

Proposition 1.5. If X,Y are two n-manifolds with boundary, and f : ∂Y → ∂X is a
homeomorphism, then X ∪f Y is an n-manifold.

Example 1.9. If X and Y are two n-manifolds, choose x ∈ X, y ∈ Y and charts (Ux, φ),
(Vy, φ). Choose U ⊆ Ux and V ⊆ Vy such that U ∼=φ Bn and V ∼=ψ Bn. Then X ′ =
X \ int(U) and Y ′ \ int(V ) are n manifolds with boundary, and ∂X ′, ∂Y ′ ∼= Sn−1. Choose
a homeomorphism f : ∂Y ′ → ∂X ′. Then the connected sum of X and Y is X ′#Y ′ :=
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X ′ ∪f Y ′. (If X and Y are path-connected, then different choices of x, y, U , V , and f give
homeomorphic manifolds.)

Theorem 1.2. (Generalized Poincare ((((((Conjecture Theorem for topological manifolds) If
X is a closed, connected n-manifold, and X is homotopy equivalent to Sn, then X is
homeomorphic to Sn.

The n = 1, 2 cases are “classical,” and we will prove this by classifying such 1 and
2-manifolds. The n = 3 case was proved by Perelman in 2003, which won him a Fields
medal and other prizes, all of which he rejected. The n = 4 case was proved by Freedman
in 1982, and the n ≥ 5 case was proven by Smale in 1960-1961.
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